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Linear interpolation or other higher order interpolation schemes are almost al-
ways used in particle-in-cell simulation because of their lower noise characteristics
and accuracy relative to the nearest-grid-point method. The higher order interpola-
tion schemes are chosen because of their optimal performance, balancing a smaller
number of particles against more computer operations per particle per time step.
However, this is not the case in large-scale gyrokinetic particle simulations, where
sometimes nearest-grid-point interpolation is used with results virtually identical to
those of linear interpolation using the same number of particles. Here, a comparison
and analysis of nearest-grid-point and linear interpolation schemes is given showing
why nearest-grid-point interpolation can be optimal. A simple two-dimensional slab
model of the ion-temperature-gradient instability and associated generation of zonal
flows is used to compare the interpolation schemes. Significant improvements in per-
formance are possible by using nearest-grid-point interpolation because of the large
number of gathers/scatters associated with gyroaveraging. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

There has recently been significant progress in kinetic simulation of turbulent energy
transport in tokamak plasmas [1–5]. This progress has been due in part to the development
of the gyrokinetic particle simulation method [6, 7] and �f methods [8–10], and to the
enormous growth in the power of massively parallel computers. In Lee’s seminal work on
gyrokinetic particle simulation [7], he showed that only gyroaveraging over four points (the
so-called four-point gyroaverage) was a reasonable approximation for k⊥�i � 1 − 2. This is
important for computational efficiency because particle-in-cell (PIC) performance is closely
tied to gather/scatter operations and each point in the gyroaverage involves such operations.
In addition, spectral evaluation of the Bessel functions in the gyrokinetic formalism is im-
practical because a Fourier sum would be required for each particle for each time step. At
first, it was surprising that the four-point gyroaverage was so accurate, but it has been well
tested by Lee [7]. There is yet another surprise which vastly improves the performance

520

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



NGP INTERPOLATION IN GK PIC SIMULATION 521

FIG. 1. Particle number convergence of the ion heat diffusivity and electrostatic field energy using both nearest
grid point and interpolation in a three-dimensional toroidal flux-tube gyrokinetic turbulence simulation. Figures
reprinted from Ref. [14].

of gyrokinetic simulations. That is, nearest-grid-point (NGP) interpolation introduces little
noise and appears to be as accurate as higher order interpolation schemes, such as linear
interpolation and the subtracted dipole approximation [11–13]. By this we mean that NGP
simulations converge with respect to particle number as quickly as linear interpolation sim-
ulations. In addition, the results of the two interpolation methods are often nearly identical.
This fact is part of the “art” of particle simulation and has not been well explained. However,
recent large-scale simulations have used NGP [1, 2, 14]. Figures 1A–1D are reprinted from
Ref. [14] and show comparison between NGP and linear interpolation in a three-dimensional
toroidal flux-tube gyrokinetic turbulence simulation. Figure 1 shows that NGP and linear
interpolation appear to produce similar results at moderate particle number (parameters
and further details are given in Ref. [14]). The simulations from Fig. 1 showed that NGP
interpolation performed approximately twice as fast as linear interpolation. Here, we study
and explain why NGP works so well in gyrokinetic particle simulations. We find that the
gyroaveraging acts as a further interpolation, averaging over nearby grid cells. Therefore,
the underlying interpolation scheme (whether NGP, linear interpolation, or multipole) is in
effect masked and is much less important than in conventional particle simulation using
the Lorentz force. In this paper we only address why NGP and linear interpolation give
similar results for gyrokinetic PIC simulations. All simulation results presented come from
gyrokinetic simulations. We begin by discussing a simple two-dimensional bounded slab
simulation model of zonal flow generation for the ion-temperature-gradient (ITG) insta-
bility. We use this model to test NGP and linear interpolation. Zonal flow generation is



522 SCOTT E. PARKER

an important saturation mechanism in ITG turbulence simulations and is a current area of
research [15–17]. Next, a discussion of the effect of the interpolation methods is given.
The gyroaveraging and interpolation are analyzed using particle shape functions [11, 13].
Finally, convergence with respect to particle number is discussed.

2. MODEL EQUATIONS

We begin by briefly mentioning the model equations used in the simulations presented
in Section 3. This model is also used as a starting point to understand finite particle size
effects in Section 4. For simplicity we restrict our discussion here to slab equations. A two-
dimensional bounded slab model without magnetic shear is discussed further in Section 3
and used to simulate the generation of zonal flows. The ions are gyrokinetic and evolved
using the �f method. This model has been discussed extensively in the literature and can
be found in Refs. [1–4, 6–10, 14]. The ion gyrokinetic equation is

∂t �f + v|| · ∇||�f + vE · ∇�f = −
[

�n + �T

2

(
v2 − 3

2

)]
∂y�fM + v‖∇‖�fM , (1)

where �f (R, v‖, �) is the perturbed guiding center distribution function, v|| is the velo-
city along the magnetic field line, � = mv2

⊥
2B is the magnetic moment, and vE = b̂ × ∇�.

The following dimensionless units are used: R → R/� , t → �i t, v|| → v||/vti , and � →
e�
Ti

· fM is a Maxwellian distribution, �n = |∂x n0(x)/n0|−1, and �T = |∂x Ti0(x)/Ti0|−1.
�i = eB/(mi c), vti = √

Ti/mi , and � = vti/�i are the ion gyrofrequency, thermal speed,
and gyroradius, respectively. In electrostatic gyrokinetic simulation, the field is solved for
using quasineutrality and is algorithmically equivalent to solving the electrostatic Poisson’s
equation. The gyrokinetic quasineutrality condition is [6]

−
(

Ti

Te

)
[1 − 	0(k

2
⊥)�(k)] = −[�n̄i (k) − �ne(k)], (2)

where �n = (n − n0)/n0 is the perturbed part of the density, �n̄i is the perturbed gyrophase
averaged ion density, and 	0 comes from gyroaveraging the Bessel function J0. The ap-
pearance of the 	0 accounts for finite gyroradius effects. For small k2

⊥, 1 − 	0(k2
⊥) reduces

to k2
⊥.

For simplicity, we restrict our discussion here to an electrostatic adiabatic electron model,
though these ideas could easily be generalized. Since the focus of this paper is on how
NGP can be used when gyroaveraging the ions, the electron model is not crucial. For
kinetic electrons, drift kinetic equations are used, so there is no gyroaveraging and linear
interpolation would be a more appropriate choice. However, most large-scale simulations
have been done using the adiabatic electron assumption [1–4]. To properly treat the adiabatic
electron response, we must take the perturbed electron density to be of the form

�ne = e[� − 〈�〉]/Te, (3)

where Te is the electron temperature and 〈�〉 denotes the purely radial (or flux surface aver-
age) electrostatic potential [18–20]. In this two-dimensional slab model the corresponding
radial coordinate is x .
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3. TWO-DIMENSIONAL SIMULATIONS OF ZONAL FLOW GENERATION

We now describe a very simple two-dimensional slab model without magnetic shear which
is a minimal model for nonlinear saturation of the ITG instability [21, 22]. Here, we keep
the evolution of the purely radial modes, which was not done in earlier simulations of this
type [21–23]. This model shows the generation and saturation of zonal flow modes in a very
simple system. Zonal flows have been found to be extremely important in determining the
nonlinear saturation level and heat flux in three-dimensional toroidal gyrokinetic simulations
[16–20, 24]. The limitation of the model presented here is that the final state is coherent
whereas the toroidal simulations show a more turbulent state. However, coherent zonal flow
modes have been shown to exist in small plasma volumes or situations with large amounts
of profile variation [4, 25, 26].

We solve Eqs. (1)–(3) using the nonlinear �f PIC method [9]. In this two-dimensional
slab model Eq. (3) simply reduces to �ne(ky = 0) = 0 and �ne = e�/Ti for all other ky . The
system is taken to be bounded in x so that �(x = 0) = 0 and �(x = Lx ) = 0, where Lx and
L y are the size of the simulation domain in x and y, respectively (in the dimensionless units
above). The model assumes uniformity in z, and a uniform magnetic field with a slight tilt in
y [21], so that the direction of the B-field is b̂ = ẑ + � ŷ, assuming � � 1. This introduces as
small but finite k||, where k|| ≡ �ky , which in turn introduces ion Landau damping, which is
an essential ingredient of the ITG instability. This type of model has been used widely [21]
and allows for modeling quasi-three-dimensional effects in a two-dimensional simulation.

The simulation uses a 16 × 16 grid with 
x = 
y = � . The results shown in Figs. 2–4
have 128 particles per grid cell. �i
t = 8.0, � = 0.01, Ti = Te, �n = 0, and �T = 0.05.
The simulation has been linearly benchmarked with the results of Ref. [22]. The most
unstable mode is (1, 1), l = 1, m = 1, where kx = �l/Lx and ky = 2�m/Lx . The (1, 1)
mode couples to the (1, −1) mode to produce a (2, 0) mode in the fashion

�(1, 1) + �(1, −1) → �T (2, 0), (4)

where �T (2, 0) corresponds to a flattening of the profile (see Refs. [21, 22] for details on
the mode-coupling theory). However, the generation of the purely radial �T (2, 0) mode
generates a corresponding purely radial electric field [26]

�(2, 0) ≈ −1

2

(
1 + k2

⊥
k2

x

)
�T (2, 0), (5)

where kx is the radial wave number of �(2, 0) and k⊥ is that of the (1, 1) mode [26]. This
�(2, 0) mode can be thought of as the zonal flow of this simple model. The corresponding
purely radial electric field generates a E × B shear flow in the y direction, which is stabi-
lizing. In the more complex, three-dimensional flux-tube simulations this zonal flow is the
dominant saturation mechanism.

Figure 2A shows the time evolution of the �(1, 1) mode (real, imaginary parts and
absolute value) using linear interpolation. The dark solid line is magnitude, the lighter line
is the real part, and the lightest line is the imaginary part. Figure 2B shows the corresponding
nonlinear energy flux. Figure 3A is the electrostatic potential as a function of x and y after
saturation, showing that the �(2, 0) zonal flow mode is dominant. Figure 3A shows the
time history of this dominant zonal flow mode, �(2, 0). Figures 2 and 3 are the results from
linear interpolation. Figure 4 shows the corresponding time evolution of �(1, 1) and the
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FIG. 2. Results using linear interpolation. (A) Time evolution of the most unstable mode, �(kx = �/Lx , ky =
2�/L y) (real, imaginary parts, and absolute value). The dark solid line is the magnitude, the lighter line is the real
part, and the lightest line is the imaginary part. (B) The nonlinear ion energy flux.

heat flux using NGP interpolation showing that there is little difference between NGP and
linear interpolation (Fig. 2).

It has been found that without the zonal flow generation, the nonlinear saturation is
due primarily to wave-particle trapping, and that the saturation level can be estimated by
balancing the growth rate with the trapping frequency [22], producing |�| = 1

2
	

kx ky
using

the dimensionless units discussed above. This estimate for the saturation level gives 0.63%,
which compares well with the 0.61% shown in Fig. 2A. However, we expect this estimate
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FIG. 3. Results using linear interpolation. (A) Surface plot of the electrostatic potential in the final nonlinear
saturated state. Note the dominance of the fundamental zonal flow mode mode �(kx = 2�/Lx , ky = 0). (B) The
time evolution of the amplitude of the �(kx = 2�/Lx , ky = 0) mode.

to be high because the self-generated shear flow is also stabilizing and therefore will tend
to cause saturation at a lower level. This is indeed what is observed at later times, where
the saturation level drops to approximately 0.03%. It is interesting that the initial saturation
level is rather high, which implies that the initial (transient) saturation is dominated by
E × B trapping and not the zonal flow shear stabilization. In addition, there is only a
factor of two reduction in the saturation level at later times. This is in contrast to three-
dimensional flux-tube simulations where zonal flow generation is the dominant saturation
mechanism [24]. However, the two-dimensional bounded slab model is consistent with
small global simulations which show a weaker effect of zonal flows on the saturation of the
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FIG. 4. Results similar to those shown in Fig. 1 except using NGP interpolation. There is little difference
between NGP and linear interpolation. (A) Time evolution of the most unstable mode, �(kx = �/Lx , ky = 2�/L y);
(B) the nonlinear ion energy flux.

turbulence and show a coherent �(2, 0) zonal flow [25, 26]. This simple two-dimensional
shearless slab model has the minimal physics for the generation of a zonal flow mode
and ensuing nonlinear saturation and shows qualitative features which are similar to small
three-dimensional toroidal global simulations. The limitation of this model is the fact that
it is very coherent, whereas three-dimensional simulations are more turbulent, with many
interacting modes.

4. FINITE-SIZE PARTICLE EFFECTS WITH GYROAVERAGING

For simplicity, we restrict our discussion to the model discussed above in Sections 2 and
3. In addition, we analyze interpolations in the two directions perpendicular to the magnetic
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field and ignore interpolation parallel to the magnetic field, which is unaffected by the
gyroaveraging procedure.

Numerical interpolation from grid to particles effects the response of �f through Eq. (1),
and interpolation from the particles to the grid affects the field equations through Eq. (2).
For example, let us examine how the gyroaveraged guiding center perturbed ion density
�n̄i in Eq. (2) is numerically calculated by taking into account the effect of using finite-size
particles [13]. In Fourier space

�n̄i (k) =
∫

J0[k⊥� (�)]�f (k, v||, �) dv|| Bd�, (6)

where �ni (k) is the guiding center (not gyroaveraged) density. Numerically, the grid in-
terpolation of this quantity is approximated using both the four-point gyroaverage and a
particle interpolation scheme, so that

�n̄Num
i (k) =

∫
S̃M

n [k,∆x, � (�)]�f (k, v||, �) dv|| Bd�, (7)

where �n̄Num
i is the numerical approximation to �n̄i and S̃M

n is an interpolation function
that is explained in detail below. Here, we attempt to analyze the interpolation scheme by
using the finite-size particle shape function S(x) [13]. We assume S(x) to be separable and
to have the same functional dependence in all directions. For example in two dimensions
S(x, y) = S(x)S(y). Therefore, we only need to specify the one-dimensional shape function
S(u) = S(u, 
u), where u is a dummy variable and could be equal to x or y with 
u the
corresponding grid size 
x or 
y. For NGP interpolation S = S0, where the subscript
indicates the order of the interpolation scheme,

S0(x) = 1


x

{
1 for |x | ≤ 
x/2,

0 otherwise.
(8)

For linear interpolation S = S1,

S1(x) = 1


x

{
1 − |x |


x for |x | ≤ 
x,

0 otherwise.
(9)

We call these “bare” numerical interpolation functions because they do not include the
numerical gyroaveraging process [7]. The shape affects both the field interpolation to the
particles, thereby modifying the gyrokinetic Vlasov equation, Eq. (1), and the deposition of
the ion density, thereby modifying Eq. (2). The kinetic theory with finite-size particles can
be carried through in various simple limits (see Ref. [13]) and one result is that the linear
theory is modified to be (
′)2 = S2(k)
2, where 
′ is the frequency rate of the finite-size
particle plasma.

Gyroaveraging is accomplished by averaging M points on a ring [7]. This can be written

S̃M
n (x) ≡ 1

M

M−1∑
m=0

Sn

[
x + � cos

(
2�m

M

)]
Sn

[
y + � sin

(
2�m

M

)]
, (10)

where � = � (�) is a function of the individual particle’s magnetic moment � = mv2
⊥

2B and
the ∆x dependence will no longer be written explicitly. The subscript n identifies the order
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of the interpolation scheme, as in Eqs. (8)–(9), and the superscript M identifies the number
of points taken in the gyroaverage about the circular ring. We write S̃(x) to emphasize
that this shape function includes the gyroaveraging over points on a ring. We now Fourier
transform S̃(x) to see its effect in Fourier space using S̃(k) = 1√

2�

∫
S(x)eik·x dx, obtaining

S̃M
n (k)= Sn(kx )Sn(ky)

{
1

M

M−1∑
m=0

exp

[
ikx � cos

(
2�m

M

)]
+ exp

[
iky� sin

(
2�m

M

)]}
(11)

for the gyroaverage about the circular ring. We define the quantity in the brackets as J̃
M
0 ≡

{· · ·}, where J̃ 0 is the numerical approximation to J0(k⊥�i ), with the zero-order Bessel
function appearing in the gyrokinetic equations. For the most typical choice of M, M = 4, J̃

4
0

simply reduces to

J̃
4
0 = 1

2
[cos(kx �) + cos(ky�)]. (12)

The main point here is that the gyroaverage can be cast as a particle-shape function in a way
similar to the interpolation function in PIC simulation. This means that the gyroaveraging
produces smoothing or smearing of the particle charge density over nearby cells. Therefore,
the bare particle-shape function can be low order and does not produce much effect in the
simulation results.

Figure 5 shows S̃4
0 as a function of kx
x and ky
y with � = 
x = 
y, which is a typical

choice of parameters in large-scale gyrokinetic simulations of ITG turbulence. We note
that different particles have different gyroradii. We choose � = 
x = 
y for illustration
purposes only. For small k⊥� this plot looks similar to J0(k⊥�) (which is not shown).

FIG. 5. A two-dimensional plot of S̃4
0(kx
x, ky
y). There is an azimuthal asymmetry in this function for

k⊥� � 1 which is not found for J0(k⊥�).
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FIG. 6. Comparison of S̃4
0 (dashed line), S̃4

1 (dashed–dotted line), and J0 (solid line) as a function of kx
x
with ky
y = 0 and � = 
x . There is little difference between them for k⊥� � 1.

However, for larger k⊥� asymmetries exist in the numerical function (Fig. 5) which are not
present in J0(k⊥�), which corresponds to numerical error in the numerical gyroaverage.
Figure 6 compares S̃4

1 and S̃4
0 as a function of kx
x with ky
y = 0, showing that for

kx
x � 1 there is little difference between the two. ky
y is set to zero in Fig. 6. J0(k⊥�)

is also shown in Fig. 6 for comparison with � = 
x = 
y. Figure 7 compares the bare
particle shape S0 and S1 along with J0 as a function of kx
x with ky
x = 0. � = 
x is taken
when plotting J0(k⊥�) in Fig. 7. When the bare shape functions (with no gyroaveraging)

FIG. 7. Comparison of the bare particle-shape functions S0 (dashed line) and S1 (dashed–dotted line) along
with J0 (solid line) as a function of kx
x with ky
x = 0. There is much more difference between these functions.
� = 
x is taken when plotting J0(k⊥�).
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FIG. 8. Convergence with respect to particle number for the peak value of the amplitude of the most unstable
mode, �(kx = �/Lx , ky = 2�/L y). This is a transient quantity and extremely sensitive to particle number. The
dashed line is NGP interpolation and the dashed–dotted line is linear interpolation.

are compared, there is much more of a difference at larger k⊥
x , which may explain
larger differences between NGP and linear interpolation in conventional PIC simulation
(without any gyroaveraging). In this paper, only gyrokinetic simulation has been used and
good agreement between NGP and linear interpolation is found with little difference in the
convergence properties with respect to particle number.

FIG. 9. Convergence with respect to particle number of the peak value of �i , the ion heat diffusivity. This
is a transient quantity and extremely sensitive to particle number. The dashed line is NGP interpolation and the
dashed–dotted line is linear interpolation.
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Figures 8 and 9 show convergence with respect to particle number for the peak value of
the most unstable mode amplitude and energy flux, respectively. The dashed line is linear
interpolation and the dashed–dotted line is NGP interpolation. Both of these quantities are
transient quantities and are extremely sensitive to particle number. Note that the two lines
track each other fairly well and converge at what appears to be the same rate. There are
slight differences between the converged results (<10%). These differences are typically not
taken as significant in tokamak turbulence and transport calculations. Similar convergence
of the saturated turbulence is found in a more complex three-dimensional toroidal flux-tube
simulation in Ref. [14]. Figure 1, which was previously published in Ref. [14], shows particle
number convergence for both NGP and linear interpolation of the ion heat diffusivity and
the field energy (see Ref. [14] for further details and the parameters used).

5. SUMMARY

Large-scale gyrokinetic particle simulations have used NGP interpolation, producing
converged results at much faster speeds (see, for example, Ref. [14] and Fig. 1). In the
perpendicular plane, NGP involves one gather/scatter of a grid quantity, whereas linear
interpolation involves four. The overall number of gathers/scatters is increased by a factor
of four in gyrokinetic simulation because of the four-point gyroaverage. We conclude that
the reason that NGP works so well is that the numerical gyroaverage can be viewed as a
finite particle shape which masks the underlying bare particle-shape function. This is true
for ions with gyroaveraging and when the perpendicular grid size is on the scale of the ion
gyroradius. For simulations using drift-kinetic electrons, there is no reason to expect NGP
to perform as well. A simple two-dimensional slab gyrokinetic simulation model of zonal
flow generation and nonlinear saturation was presented and used to test the interpolation
schemes. The limitation of this model is that it is dominated by a small number of modes
whereas three-dimensional simulations exhibit broadband turbulence. It does, however,
show the generation of the zonal flow, and initial saturation, in its simplest form. This
simulation model showed that convergence with respect to particle number is virtually
identical for NGP and linear interpolation. Similar results are found in three-dimensional
toroidal gyrokinetic simulations [14].
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